INTEGRABLE KdV SYSTEMS: Recursion Operators of Degree Four
نویسندگان
چکیده
The recursion operator and bi-Hamiltonian formulation of the Drinfeld-Sokolov system are given.
منابع مشابه
On construction of recursion operators from Lax representation
In this work we develop a general procedure for constructing the recursion operators for non-linear integrable equations admitting Lax representation. Several new examples are given. In particular we find the recursion operators for some KdV-type systems of integrable equations.
متن کاملIntegrable Couplings of Soliton Equations by Perturbations I. A General Theory and Application to the KdV Hierarchy
A theory for constructing integrable couplings of soliton equations is developed by using various perturbations around solutions of perturbed soliton equations being analytic with respect to a small perturbation parameter. Multi-scale perturbations can be taken and thus higher dimensional integrable couplings can be presented. The theory is applied to the KdV soliton hierarchy. Infinitely many ...
متن کاملA Strange Recursion Operator Demystified
We show that a new integrable two-component system of KdV type studied by Karasu (Kalkanlı) et al. (arXiv: nlin.SI/0203036) is bihamiltonian, and its recursion operator, which has a highly unusual structure of nonlocal terms, can be written as a ratio of two compatible Hamiltonian operators found by us. Using this we prove that the system in question possesses an infinite hierarchy of local com...
متن کاملJordan Manifolds and Dispersionless KdV Equations
Multicomponent KdV-systems are defined in terms of a set of structure constants and, as shown by Svinolupov, if these define a Jordan algebra the corresponding equations may be said to be integrable, at least in the sense of having higher-order symmetries, recursion operators and hierarchies of conservation laws. In this paper the dispersionless limits of these Jordan KdV equations are studied,...
متن کاملIntegrable Couplings, Variational Identities and Hamiltonian Formulations
We discuss Hamiltonian formulations for integrable couplings, particularly biand tri-integrable couplings, based on zero curvature equations. The basic tools are the variational identities over non-semisimple Lie algebras consisting of block matrices. Illustrative examples include dark equations and biand tri-integrable couplings of the KdV equation and the AKNS equations, generated from the en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998